NASA Space Place May 2013

By Dr. Ethan Siegel

Triple Treat

The solar system is a busy place, with five wandering planets visible to the naked eye alone. When any two pass close by each other from our point of view, we see an astronomical conjunction, but on very rare occasions, three planets will find themselves grouped together: a triple conjunction. Towards the end of May, Mercury, Venus and Jupiter will treat us to the best triple conjunction in years.

On May 25th, Mercury will pass within 1.4° of Venus, then two days later Mercury comes within 2.4° of Jupiter, and finally on the 28th, Jupiter and Venus approach within 1° of one another. If it weren’t for the slight orbital tilt of our solar system’s planetary orbits, these conjunctions would all be occultations instead. During the nights of May 26th-27th, all three planets are visible immediately after sunset within the same 3° field of view, with the triple conjunction peaking in a triangular shape on the 26th. (For scale, the full Moon subtends about 1/2°.) The three planets appear close together for a few days more, making a line in the sky on the 30th/31st.

How does this happen? Mercury and Venus race around the Sun far faster than Earth, with Mercury completing more than four revolutions around the Sun for each one that Earth makes. At the same time, Jupiter is far slower, taking 12 years to orbit just once around the Sun. Jupiter’s been high in the sky during the early parts of the night, but steadily lowers throughout May as Earth continues to move away from it, approaching its maximum distance from Earth. Mercury and Venus, meanwhile, begin to move out from behind the Sun during May: Venus at the beginning of the month and Mercury in the middle.

Thus, during this triple conjunction, all three planets will be on the far side of the Sun, something that happens just 25% of the time in triple conjunctions involving Mercury and Venus! If you telescopically resolve these planets into disks, you’ll see our inner worlds in a nearly-full gibbous phase. Jupiter will appear largest in terms of angular diameter, followed by Venus and lastly by Mercury. Just a year ago, during its now-famous transit, Venus took up more than a full arc-minute in the sky; during this conjunction, it will just one-sixth that angular size and less than a third the apparent diameter of Jupiter. Nevertheless, Venus will still be more than six times as bright as Jupiter during this time, outshining all night-sky objects other than the Moon. Closer conjunctions of two naked-eye planets are frequent, but getting three or more like this happens just once or twice per decade, so don’t miss your chance to see it.

And speaking of occultations, The Space Place has a great kid-friendly explanation of the Venus transit and solar eclipses of 2012 at

Dr. Ethan Siegel, a theoretical astrophysicist, is a professor at the University of Portland (OR) and Lewis & Clark College

Astronomy Day Donovans Suba and Hobby Shop Saturday May 18, 2013 1200-400pm
This is our make up day for Astronomy Day. to be held at Donovans Suba and Hobby Shop, we will set up starting at 1200 noon till 400pm. Static telescope displays, telescopes with solar filters. Hand outs and activities.
Weather Permitting.

NASA Space Place April 2013

By Diane K. Fisher

Exploring the Water World

In some ways, we know more about Mars, Venus and the Moon than we know about Earth. That’s because 70% of our solar system’s watery blue planet is hidden under its ocean. The ocean contains about 98% of all the water on Earth. In total volume, it makes up more than 99% of the space inhabited by living creatures on the planet.
As dominant a feature as it is, the ocean—at least below a few tens of meters deep—is an alien world most of us seldom contemplate. But perhaps we should.
The ocean stores heat like a “fly wheel” for climate. Its huge capacity as a heat and water reservoir moderates the climate of Earth. Within this Earth system, both the physical and biological processes of the ocean play a key role in the water cycle, the carbon cycle, and climate variability.

This great reservoir continuously exchanges heat, moisture, and carbon with the atmosphere, driving our weather patterns and influencing the slow, subtle changes in our climate.
The study of Earth and its ocean is a big part of NASA’s mission. Before satellites, the information we had about the ocean was pretty much “hit or miss,” with the only data collectors being ships, buoys, and instruments set adrift on the waves.

Now ocean-observing satellites measure surface topography, currents, waves, and winds. They monitor the health of phytoplankton, which live in the surface layer of the ocean and supply half the oxygen in the atmosphere. Satellites monitor the extent of Arctic sea ice so we can compare this important parameter with that of past years. Satellites also measure rainfall, the amount of sunlight reaching the sea, the temperature of the ocean’s surface, and even its salinity!

Using remote sensing data and computer models, scientists can now investigate how the oceans affect the evolution of weather, hurricanes, and climate. In just a few months, one satellite can collect more information about the ocean than all the ships and buoys in the world have collected over the past 100 years!
NASA’s Earth Science Division has launched many missions to planet Earth. These satellites and other studies all help us understand how the atmosphere, the ocean, the land and life—including humans—all interact together.

Find out more about NASA’s ocean studies at **link**. Kids will have fun exploring our planet at The Space Place, **link**.
This article was written by Diane K. Fisher and provided through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This image from September 2012, shows that the Arctic sea is the smallest recorded since record keeping began in 1979. This image is from NASA’s Scientific Visualization Studio at Goddard Space Flight Center.

Go to page  1 2 3 ... 11 [12] 13
This site is powered by e107, which is released under the terms of the GNU GPL License.!

'interfectus' by jalist